幾何学入門 試験問題 (2011年1月28日)

以下, \mathbb{R} で実数全体, \mathbb{R}^n で n 次元ユークリッド空間を表わし,r>0 に対して, S_r^2 で 2 次元球面 $\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=r^2\}$ を表わすものとする.また,「多様体」とは,この講義の前半で定義したもの (数学的に正確な言いかたをするならば,ユークリッド空間に埋め込まれた C^∞ 級多様体)を指すこととする.

1. \mathbb{T}^2 で 2 次元トーラス $\{(x,y,z,w)\in\mathbb{R}^4\mid x^2+y^2=z^2+w^2=1\}$ を表わすものとし、写像 $f:\mathbb{T}^2\to S^2_{\sqrt{2}}$ を

$$f(x, y, z, w) = (2(xy + zw), 2(xw - yz), x^2 - y^2 + z^2 - w^2)$$

で定める。 \mathbb{T}^2 の点 (1,0,1,0) と (1,0,0,1) が f の正則点であるかそうでないかを、理由をつけて答えよ

- 2. 函数 $f: S_1^2 \to \mathbb{R}$ を f(x,y,z) = 2x + yz で定めたとき,f の臨界点をすべて求めよ.さらに,各臨界点が Morse 型 (非退化ともいう) であるかどうかを調べ,Morse 型であるときはその指数を求めよ.
- 3. 次の M_1 から M_4 がそれぞれが多様体であるかそうでないかを理由をつけて答えよ. また、多様体である場合にはその次元を求めよ.

$$M_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid (x^{2} + y^{2})z = 0\}$$

$$M_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = x^{2} + y^{2} - z^{2} = 1\}$$

$$M_{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{3} + y^{3} + z^{3} = x^{5} - y^{5} = 2\}$$

$$M_{4} = \{(x, y, z) \in \mathbb{R}^{3} \mid {}^{\exists}k = 1, 2, \cdots \text{ s.t. } k(x^{2} + y^{2} + z^{2}) = 1\}$$

- 4. $n \geq 1$ とし, $M \subset \mathbb{R}^{2n+1}$ を n 次元多様体とする。 $v \in \mathbb{R}^{2n+1}$ に対して, $M+v=\{p+v\mid p\in M\}$ と置く。 \mathbb{R}^{2n+1} の部分集合 Y を $Y=\{v\in \mathbb{R}^{2n+1}\mid M\cap (M+v)=\emptyset\}$ で定めると,Y の閉包は \mathbb{R}^{2n+1} と一致することを示せ.
- 5. 次の主張 (a)(b) が正しければ証明せよ. 正しくなければ反例を挙げよ.
- (a) $M \subset \mathbb{R}^n$ が m 次元多様体であるとき,M の開部分集合もまた m 次元多様体.
- (b) $M_1, M_2 \subset \mathbb{R}^n$ が多様体であるとき、 $M_1 \cap M_2$ も多様体.

1. f の拡張 $F: \mathbb{R}^4 \to \mathbb{R}^3$ を f と同じ多項式で定める。 $p=(x,y,z,w) \in \mathbb{T}^2$ での F の微分は、

$$DF_p = \begin{pmatrix} 2y & 2x & 2w & 2z \\ 2w & -2z & -2y & 2x \\ 2x & -2y & 2z & -2w \end{pmatrix},$$

接ベクトル空間は, $T\mathbb{T}_p^2 = \{(s,t,u,v) \mid xs + ty = zu + wv = 0\}.$

 $p_1=(1,0,1,0)$ とする。 $e_2=(0,1,0,0),\ e_4=(0,0,0,1)$ は $T\mathbb{T}_{p_1}^2$ の基底で, $DF_{p_1}(e_2)=(2,-2,0),\ DF_{p_1}(e_4)=(2,2,0)$ より, $Df=DF|_{T_{p_1}\mathbb{T}^2}$ の階数は 2. よって, p_1 は f の正則点。

 $p_2=(1,0,0,1)$ とする。 $e_2=(0,1,0,0),\ e_3=(0,0,1,0)$ は $T\mathbb{T}_{p_2}^2$ の基底で, $DF_{p_2}(e_2)=(2,0,0),\ DF_{p_2}(e_3)=(2,0,0)$ より, $Df=DF|_{T_{p_2}\mathbb{T}^2}$ の階数は 1.よって, p_1 は f の臨界点。

2. $G(x,y,z)=x^2+y^2+z^2-1$ で $G:\mathbb{R}^3\to\mathbb{R}$ を定めると、 $S_1^2=\{p\in\mathbb{R}^3\mid G(p)=0\}$. $(x,y,z)\in S_1^2$ に対して、 $DG_{(x,y,z)}=(2x\;2y\;2z)\neq(0\;0\;0)$. Lagrange の未定乗数法より、 $p=(x,y,z)\in S^2$ が f の臨界点であることと、 $Df_p=\lambda\cdot DG_p$ となる λ が存在することは同値、計算すると、後者の条件は、 $(x,y,z)=(\pm 1,0,0)$ と同値であることがわかる。

 $D^2=\{(s,t)\in\mathbb{R}^2\mid s^2+t^2<1\}$ と置き、 S_1^2 の局所パラメータ表示 $\Phi_\pm:D^2\to S^2$ を $\Phi_\pm(s,t)=(\pm\sqrt{1-s^2-t^2},s,t)$ で定めると、 $\Phi_\pm(0,0)=(\pm1,0,0)$. $f\circ\Phi_\pm$ の (0,0) でのヘッセ行列を計算すると、

$$\begin{pmatrix} \mp 2 & 1 \\ 1 & \mp 2 \end{pmatrix}$$

となるので、(1,0,0), (-1,0,0) はともに f の Morse 型臨界点で、その指数は 2 と 0.

3. $M_1 = (\mathbb{R}^2 \times \{0\}) \cup (\{(0,0)\} \times \mathbb{R})$. もしも M_1 が n 次元多様体ならば, $(0,0,0) \in M_1$ の M_1 における近傍で,n 次元開円盤 D^n と同相なものが存在する。 D^n かた一点を引いたものは,連結 $(n \neq 2)$,または,二つの連結成分を持つ。(n = 1). しかし, $M_1 \setminus \{(0,0,0)\}$ は 3 つの連結成分を持つので,すべての n について, M_1 は n 次元多様体ではありえない.

 $G(x,y,z)=(x^2+y^2-1,z)$ とすると, $M_2=\{p\in\mathbb{R}^3\mid G(p)=0\}.$ $DG_{(x,y,z)}$ の階数は 1 以下となるのは,x=y=0 のときなので, $p\in M_2$ ならば DG_p の階数は 2.陰関数定理より M_2 は 1 次元多様体.

 $G(x,y,z)=(x^3+y^3+z^3,x^5+y^5)$ とすると, $M_3=\{p\in\mathbb{R}^3\mid G(p)=0\}.$ $DG_{(x,y,z)}$ の階数が 1 以下となるのは,x,y,z のいずれか 2 つが 0 のときなので, $p\in M_3$ ならば DG_p の階数は 2.陰関数定理より, M_3 は 1 次元多様体.

 \mathbb{R}^3 の開集合 $\mathbb{R}^3\backslash\{(0,0,0)\}$ 上の函数 G を $G(x,y,z)=\sin\frac{\pi}{x^2+y^2+z^2}$ で定めると, $M_4=\{(x,y,z)\in\mathbb{R}^3\backslash G(x,y,z)=0\}.$ p=(x,y,z) に対して, $\|p\|^2=x^2+y^2+z^2$ とおくと,

$$DG_{(x,y)} = \left(-\frac{2x}{\|p\|^4} \cos \frac{\pi}{\|p\|^2} - \frac{2y}{\|p\|^4} \cos \frac{\pi}{\|p\|^2} - \frac{2z}{\|p\|^4} \cos \frac{\pi}{\|p\|^2} \right).$$

よって, $(x,y,z)\in M_4$ ならば $DG_{(x,y,z)}$ の階数は 1. 陰関数定理より, M_4 は多様体.

4. $F: M \times M \to \mathbb{R}^{2n+1}$ を F(p,q) = p-q で定めると, $M \cap (M+v)$ が空でないことと,v が F の像 $F(M \times M)$ に含まれることは同値.一方, $M \times M$ は 2n 次元なので, $M \times M$ の任意の点は臨界点.Sard の定理より,F の臨界値集合 $F(M \times M)$ は測度 0 の集合なので, $Y = \mathbb{R}^{2n+1} \setminus F(M \times M)$ の閉包は \mathbb{R}^{2n+1} と一致する.

- 5. (a) V を M の開部分集合とする。 $p \in V$ に対して, \mathbb{R}^m の開部分集合 U と M の局所パラメータ表示 $\Phi: U \to M$, $x_0 \in U$ を $\Phi(x_0) = p$ となるように取る。 $U' = \Phi^{-1}(V)$ は x_0 を含む \mathbb{R}^m の開集合で, Φ の U' への制限 Φ' は, $\Phi'(x_0) = p$ をみたす M の局所パラメータ表示。 V のすべての点に対して, その点を像に含む m 次元局所パラメータ表示が取れるので, V は m 次元多様体.
- (b) $M_1=\{(x,y,0)\mid x,y\in\mathbb{R}\},\ M_2=\{(x,y,xy)\mid x,y\in\mathbb{R}\}$ とすると、 M_1,M_2 は 2次元多様体 $((x,y)\mapsto(x,y,0),(x,y)\mapsto(x,y,xy)$ が局所パラメータ表示). しかし、 $M_1\cap M_2=\{(x,y,0)\mid x,y\in\mathbb{R},xy=0\}$ は多様体ではない ((0,0,0) を含む開集合で、 $\mathbb{R}^m(m\geq 0)$ の開集合と同相なものが取れない).